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An iterative algorithm is developed to retrieve the complex exit-face

wavefunction for a two-dimensional projection of a nanoparticle from a

measurement of the oversampled modulus of its Fourier transform in reciprocal

space. The algorithm does not require the support (boundary) of the object to be

known. A loose support for the complex object is gradually found using the

Oszlányi–Süto�� charge-flipping algorithm, and a compact support is then

iteratively developed using a dynamic Gerchberg–Saxton–Fienup algorithm.

At the same time, the complex object is reconstructed using this compact

support. The algorithm applies to the reconstruction of complex images with any

distribution of phase values from 0 to 2�. Modification of the algorithm by using

real-value constraints for a complex object in the charge-flipping algorithm leads

to faster reconstruction of the object whose phase value is smaller than �/2.

1. Introduction

Diffractive imaging promises to improve resolution, sensitivity

and the range of wavelengths used in X-ray microscopy while

eliminating the aberrations due to lenses in electron micros-

copy. While the atomicity constraint allows direct methods to

provide a practical solution of the phase problem for atomic

resolution data, the ‘oversampling’ of data at twice the Bragg

rate has provided a similar practical method for non-periodic

objects at any resolution. This diffractive imaging method for

non-periodic objects retrieves the phases of non-periodic

objects by iterative numerical techniques. The object and

diffraction pattern are assumed to be related by simple

Fourier transform, and no multiple scattering or Ewald sphere

curvature effects are considered. Recently, the reconstruction

of non-periodic structures by diffractive imaging has stimu-

lated considerable interest as a contribution to new methods

for solving protein structures that cannot be crystallized

(Spence & Doak, 2004; Miao et al., 1999; Miao & Sayre, 2000;

De Caro et al., 2002; He et al., 2003). The first successful

application of diffractive imaging to electron diffraction data

was reported by Weierstall et al. (2001) and it has been used

more recently to produce the first atomic resolution image of a

single carbon nanotube (Zuo et al., 2003). Developed from the

Gerchberg–Saxton algorithm (Gerchberg & Saxton, 1972), the

error-reduction (ER) and later hybrid input–output (HIO)

algorithm (Fienup, 1982) are the two most widely used

methods for phase recovery applied to single-particle Fraun-

hofer diffraction patterns (Fienup, 1982). The algorithm is

based on three constraints – the known sign of the (real)

charge density, the known Fourier moduli and the known

boundary (support) of the object. Other algorithms have also

been proposed, e.g. Speden (Hau-Riege et al., 2004) and a

novel density modification approach embedded in SIR2002

(Carrozzini et al., 2004). In this paper, we discuss a new phase

recovery method that can be used to reconstruct a complex

image of a single-particle object.

Phase retrieval for the more difficult case of complex

objects is important in various areas such as electron micros-

copy, astronomy, crystallography and wavefront sensing.

Multiple scattering of electrons or a spatial variation in the

anomalous scattering of X-rays can both give rise to a complex

near-field wavefunction, which we attempt to reconstruct as

the image of the object. The loss of real and positive

constraints in real space must then be compensated by use of

other constraints during phase retrieval for complex objects. It

has been shown that reconstruction of a complex object is

usually possible if a sufficiently accurate support is available

(Fienup, 1987), if a low-resolution image can be measured

(Fienup & Kowalczyk, 1990) or by using the autocorrelation

function of the object to iteratively improve the support

estimate (Marchesini et al., 2003). Recently, a simple and

effective algorithm was developed by Oszlányi & Süto�� (2004)

to solve the phase problem for Bragg diffraction. By itera-

tively reversing (flipping) the sign of the charge density in

regions where it lies below a small threshold, the algorithm has

been successfully applied to simulated data (Oszlányi & Süto��,
2004) as well as real experimental data (Wu, Spence et al.,

2004). In the flipping algorithm, a ‘dynamic’ support (a

support that may be different from one iteration to the next) is

found in each iteration. Pixel values above the threshold

define the support. Pixels within the support remain

unchanged at each iteration, while all others outside the

support have their sign reversed. The advantage of the charge-

flipping algorithm is that it starts with measured moduli, but

does not require either a known support or make the



assumption of atomicity, as in direct methods. While it does

not use any knowledge of scattering factors, it does require

near atomic resolution data for crystals. By combining this

flipping algorithm with the HIO algorithm, we have extended

the application of the charge-flipping algorithm to non-peri-

odic objects which are real and positive under kinematical

scattering conditions (Wu, Weierstall et al., 2004). In this

paper, we explore the applicability of the charge-flipping

algorithm to structure recovery for complex particles. Finding

a compact support is a crucial step in this problem. We have

developed a scheme that combines the charge-flipping algor-

ithm with dynamic HIO (where the support is varied during

the HIO iterations) and a real-space support extraction

method (e.g. by setting a threshold) to address the phase

retrieval problem for complex objects.

A structure can be uniquely reconstructed from a Fraun-

hofer diffraction pattern intensity distribution if certain

constraints in real space are satisfied, in addition to the

modulus constraint in the reciprocal space. For a complex

object f(x), exp(i�c)f(x � x0) and exp(i�c)f�(�x � x0), where

�c is a constant phase and f� is the conjugate of f, have the

same Fourier modulus, and we consider them equivalent

images for the purpose of our reconstruction. In our structure

reconstruction method, the charge-flipping algorithm is firstly

used to find a loose support. After that, a combination of

dynamic HIO and a dynamic ER algorithm is used to find a

more compact support and retrieve the phases for the complex

object.

2. Iterative phase retrieval algorithm

We assume that the modulus |F(u)| has been measured, where

u is a two-dimensional (2D) vector in reciprocal space. The

support s(x) for the complex object f(x) is unknown. x is a 2D

vector in real space. The aim of the algorithm is to reconstruct

f(x) from |F(u)| by finding the compact support s(x).

In each iteration between real and reciprocal space, the

algorithm applies the modulus constraint. It consists of three

steps: (i) Fourier transform of the current estimate of the

object gn(x) to obtain Gn(u); (ii) replace the current modulus

|Gn(u)| with the known modulus |F(u)|; (iii) inverse Fourier

transform to yield g0nðxÞ. This is

g0nðxÞ ¼ =
�1 =½gnðxÞ�

jFðuÞj

j=½gnðxÞ�j

� �
; ð1Þ

where = and =�1 represent Fourier and inverse Fourier

transforms, respectively. The constraints in real space are

differently defined for each iterative phase-retrieval algor-

ithm. For the error-reduction algorithm, this is, at the nth

iteration,

gnþ1ðxÞ ¼
g0nðxÞ x 2 sðxÞ

0 x =2 sðxÞ.

�
ð2Þ

The HIO algorithm was designed by adding a feedback

function, which is (Fienup, 1982)

gnþ1ðxÞ ¼
g0nðxÞ x 2 sðxÞ

gnðxÞ � �g0nðxÞ x =2 sðxÞ,

�
ð3Þ

where � is a constant between 0.5 and 1. g0nðx) is the result of

applying the modulus constraint to gn(x) as defined in equa-

tion (1). The charge-flipping algorithm, which works with a

dynamic support sd(x), can be written as

gnþ1ðxÞ ¼
g0nðxÞ x 2 sdðxÞ

�g0nðxÞ x =2 sdðxÞ.

�
ð4Þ

The charge-flipping algorithm is mathematically similar to

Fienup’s output–output (not input–output) algorithm with

� = 2, but works with a dynamic support (Wu, Weierstall et al.,

2004). Iterative application of the modulus constraints and

real-space constraints enables phase retrieval.

Our scheme to reconstruct a complex object starts with the

charge-flipping algorithm. Here we firstly discuss the method

used to reconstruct a phase object whose phase distribution is

within 0 to �/2. (This exceeds the range of the weak-phase-

object or single-scattering approximation, which requires

phases��=2. In the following, we use the term phase object

to represent an object whose phase variation lies within 0 and

�=2.) The first estimate of the image g1(x) is generated by

Fourier transform of a set of random phases ’(u) combined

with the observed modulus |F(u)|. The iterative Fourier

transform algorithm for the nth iteration is as follows.

1. Determine the dynamic support sd(x). Sort |gk(x)|

in descending order and define a ratio �. (The threshold will

consist of the fraction � of image pixels with the largest

values.) Select the m pixels with the highest positive values,

such that m = n�, where n is the total number of pixels. These

m pixels define the current support sd(x). For a complex

object, the ‘flipping’ operation we use is defined as follows: we

retain the highest peaks in the current modulus of the complex

object in real space and reverse the sign of the real part of all

pixels outside the current dynamic support:

gnþ1ðxÞ ¼
jg0nðxÞj x 2 sdðxÞ

�realfg0nðxÞg x =2 sdðxÞ.

�
ð5Þ

2. Apply modulus constraints using equation (1).

3. Go to step 1 with n replaced by (n + 1).

After running the charge-flipping algorithm for about 50

iterations, we switch to a combination of charge-flipping and

the dynamic HIO algorithm, i.e. 10 iterations of HIO followed

by 10 iterations of the flipping algorithm. ‘Dynamic HIO’

refers to an application of the HIO algorithm working with a

dynamic support sd(x) that changes during iterations. The

dynamic support sd(x) is calculated by selecting a certain

percentage of the largest pixels from the modulus of the

current estimate of the complex object, using the same

procedure as discussed before:

sdðxÞ ¼
1 if jgnðxÞj � �
0 if jgnðxÞj< �.

�
ð6Þ

In equation (6), if the modulus of the current complex object

gn(x) is larger than a threshold � determined by � (so that the

number of pixels greater than � equals n�), then this pixel x is
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included in the dynamic support. The dynamic HIO is used

because of its ability to pull the reconstruction process out of

local minima. The initial support used for dynamic HIO is

provided by the charge-flipping algorithm. We find that the

peaks found by the charge-flipping algorithm do not exactly

coincide with those in the modulus, real or imaginary parts of

the complex object. However, they do provide a loose support

estimate. Once this is obtained, we use a combination of

dynamic HIO and the ER algorithm. From then on, the

reconstructed object gn(x) is retained as a complex function in

each iteration, although the dynamic support is found using

the modulus of the complex object |gn(x)|. Other known

information (if any) about the support can also be used, e.g.

the oversampling rate and the continuous connection property

of the support (or a discrete support). For example, if an

unknown support is continuous, we can apply this constraint

by deleting all the other smaller discrete parts in the current

support and filling in the holes inside the largest part of the

support. If we know that a complex image has an oversampling

rate of 4, we can set the fraction � = 0.25 when subtracting the

support. Meanwhile, in order to derive a support, various

image processing techniques can also be applied, such as

image contrast enhancement and background reduction,

before using the largest pixels in the modulus to form the

support.

The reconstruction of a particle whose phase variation

ranges from 0 to 2� is more difficult than that of a phase object

and involves the problem of phase unwrapping. The estima-

tion of the percentage parameter � must then be much closer

to its optimal value. For example, in reconstruction of a phase

object, an error of�20% in the � use is tolerable. However, in

the reconstruction of a general complex object, the error can

only be around 5%. Meanwhile, the equation (5) used in the

above procedure is replaced by equation (4). We also found

that it was helpful to use some dynamic HIO iterations alone

to let the dynamic support approach its correct form, based on

the one found by the charge-flipping algorithm. The dynamic

support sHIO
d for these HIO iterations was defined as

sHIO
d ðxÞ ¼

1 if jgnðxÞ � CircleðxÞj � �
0 if jgnðxÞ � CircleðxÞj< �,

�
ð7Þ

where � represents convolution and Circle(x) is a circle

function with radius R of 2–4 pixels:

CircleðxÞ ¼
1 jxj 	 R

0 jxj > R.

�

Once a good estimation of the percent parameter � is found

and the parameters of the support can be reasonably

constrained, dynamic HIO assists the dynamic support to

approach to the correct form. The modulus of the current

reconstruction |g(x)| is filtered using a Wiener filter to improve

the signal/noise ratio.

The progress of the iterations can be followed using a

residual R, calculated using the modulus of the current esti-

mate of the object and the observed moduli:

R ¼
P
jjGkðuÞj � jFðuÞjj

�P
jFðuÞj: ð8Þ

A sharp drop in a plot of R versus iteration number is a clear

sign of convergence of the algorithm. If the current dynamic

support is not correct, i.e. sd(x) 6¼ s(x), the R values increase in

the dynamic HIO iterations. A value of R approaching zero is

needed for a faithful reconstruction of a complex object. We

note that this is a different error metric than that normally

used for HIO analysis, which measures the density outside the

support. The R factor above is similar to that used in crys-

tallography and takes no account of phases. It is therefore not

unique in the absence of other constraints.

3. Results of computational trials

Fig. 1(a) shows a simulated diffraction pattern for a complex

object (the oversampling rate is 4). Using the charge-flipping

algorithm, the highest peaks in the modulus of the recon-

structed complex object are used to derive a loose support.

The reconstructed image at the 160th iteration is shown in Fig.

1(b). The highest peaks are the modulus while the low pixels

are the real part of the complex object. The 160 iterations

include 60 charge-flipping iterations and 100 combined

charge-flipping and dynamic HIO iterations. Since the initial
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Figure 1
(a) Simulated diffraction pattern of the complex object used for phase
recovery test. (b) The reconstructed image (high value pixels are modulus
and low pixels flipped are the real part of the complex object) after using
a combination of charge-flipping and the dynamic HIO algorithm. (c) The
support extracted from (b) by selection of the high-valued connected
pixels.



phases were random numbers and we do not have a support

domain at the beginning of the program, the origin cannot be

fixed and the structure solved by the algorithm has a randomly

positioned origin. The loose support extracted from Fig. 1(b) is

shown in Fig. 1(c). With this loose support, a combination of

dynamic HIO and ER iterations were employed. The method

for finding the dynamic support is the same as that used in the

charge-flipping algorithm, which depends on ‘peaks’ emerging

in the modulus of the reconstructed object. At this stage, we

keep the support unchanged in the ER iterations, although it is

still not exactly equal to the compact support. The dynamic

support only develops within the dynamic HIO iterations.

Meanwhile, the current reconstructed object is retained in

complex form. In about 80% of our tests, this application of

the dynamic HIO and ER algorithm led to the correct

compact support, and thus the complex object could be

correctly reproduced. We find that some errors in the dynamic

support can be corrected by investigating the phase of the

reconstructed complex object. Usually they are situated at the

edge of the dynamic support. Fig. 2(a) shows the reconstructed

modulus of the complex object in real space after 360 itera-

tions. It reproduces the original modulus. Since the support is

calculated from the current modulus by selecting out the

highest peaks according to the fractional parameter �, it is

easy to introduce errors of a few pixels at the edge of the

support. The support derived from Fig. 2(a) is shown in Fig.

2(c). If we compare Fig. 2(c) to Fig. 2(a), we find that the

support is wrong in one pixel at the place indicated by an

arrow. Meanwhile, if we investigate the phase of the recon-

structed object shown in Fig. 2(b), there is a sharp phase

change in the wrong pixel as indicated by an arrow. This is a

useful sign for finding errors in the current support, and

provides a way to correct the support.

The variation in R factor during iterations of the algorithm

is shown in Fig. 3, where the algorithms used are indicated.

This consists of 60 charge-flipping iterations, followed by 100

iterations of the combined charge-flipping and dynamic HIO

iterations, ending with 200 iterations of the combined dynamic

HIO and ER algorithms. We find that in most of the dynamic

HIO iterations R increases. This is because the dynamic

support is not correct. When the support is correctly recon-

structed, R for the HIO also decreases. The final R in our

current test approaches almost zero.

The same method works well also for a complex object

having a support with many separated parts. Fig. 4(a) shows a

reconstructed image of such a complex object at the 100th

iteration, soon after the application of a combination of the

charge-flipping algorithm and the dynamic HIO algorithm.

The residual R versus iteration number is shown in Fig. 4(b).

The reconstructed modulus and phase of the complex object

are shown in Figs. 4(c) and 4(d), respectively. They reproduce

the starting object. The minimum phase is zero while the

maximum phase is �/2 (the phase lies in the range 0 < � < �/2)

in the above two tests.

Figs. 5(a) and 5(b) show the modulus and phase of a

randomly generated complex particle, whose phase ranges
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Figure 2
(a) The reconstructed modulus and (b) phase of the complex object. It
reproduces the original object. (c) The reconstructed support from the
combined use of a dynamic HIO and error-reduction algorithm. Every
five times, high modulus and continuous pixels are selected out to form
the dynamic support.

Figure 3
The residual R factors as a function of iteration numbers. The algorithm
can be divided into three stages. It starts with merely the charge-flipping
(FL) algorithm, continues by a combination of charge flipping and HIO
and finishes with a combined use of HIO and the error-reduction (ER)
algorithm. All these work with a dynamic support, which gradually
approaches the correct support.



from 0 to 2�. The � we used is 0.15, which is larger than the

optimal value of 0.132 (the oversampling rate is thus 1/0.132 =

7.57). An exactly compact support could not be found by using

a large �. However, the reconstructed object as shown in Figs.

5(c) and 5(d) reproduced the original particle inside the

compact support. Fig. 5(c) shows the reconstructed modulus at

iteration 640 and it is the same as Fig. 5(a). The reconstructed

phase is shown in Fig. 5(d). Those phases inside the compact

support in Fig. 5(d) are related to those shown in Fig. 5(b) by a

constant of �c = 1.52. The reconstructed particle is thus related

to the original one by exp(i�c)g(x � x0) to g(x), where �c =

1.52. Since the image reconstructed by the charge-flipping

algorithm has a random origin, for each reconstruction x0 has a

random value. Fig. 5(e) shows the reconstructed modulus at

iteration 140 when the combination of the charge-flipping

algorithm and the dynamic HIO is finished. Compared to that

shown in Fig. 1(b), we find that the reconstructed modulus for

a general complex particle is much more error prone at this

stage. Fig. 5( f) shows the support found at iteration 640. The

support is bigger than the correct one, which is also strictly a

loose support. We have thus shown that the correct complex

particle could be reconstructed, although the parameter � is

not known exactly a priori. The variation of the R factor

during iteration of the algorithm is shown in Fig. 6. The

reconstruction consists of 60 charge-flipping iterations, 80

iterations of the combined charge-flipping and dynamic HIO

iterations, followed by 180 dynamic HIO with dynamic

support determined by equation (7), and ending with 320

iterations of the combined dynamic HIO and ER algorithms.

The final R in our current test is 0.0002.

The oversampling rate as well as the noise can influence

greatly the phase recovery process. We found that, when the

oversampling rate was larger than 3.12, a faithful reconstruc-

tion of the example shown in Fig. 5 could be achieved in the

absence of noise. We also add noise to the simulated moduli

using noise = (signal/SNR) 
 random, where SNR is the

signal-to-noise ratio and random is a random number from
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Figure 4
(a) Reconstructed modulus (high peaks) using the charge-flipping
algorithm, on which basis a support is subtracted. (b) The residual R
factors as a function of iteration numbers. (c) The final reconstructed
modulus and (d) phases of the discrete complex object.

Figure 5
(a) Modulus and (b) phase of a complex object with phase range from 0 to
2�. (c) The reconstructed modulus and (d) phase of the complex object at
iteration 660. (e) The reconstructed modulus at iteration 140 when only
the flipping and dynamic HIO algorithm were used. ( f ) The recon-
structed loose support at iteration 640 from the combination use of
dynamic HIO and error-reduction algorithm.

Figure 6
The residual R factors as a function of iteration number. The algorithm
can be divided into four stages. It starts with merely the charge-flipping
algorithm, continues by a combination of charge flipping and HIO,
dynamic HIO only, and finishes with a combined usage of the HIO and
ER algorithms. All those work with a dynamic support.



�0.5 to 0.5 (Miao et al., 1998). For the reconstruction shown in

Fig. 5, most of the features could be recovered when the SNR

was set to a value larger than 10.

4. Discussion

Unlike the conventional HIO algorithm, the flipping algor-

ithm does not require the support in real space to be known.

On the contrary, the algorithm finds the support. This

combination of dynamic HIO with the charge-flipping algor-

ithm can solve the stagnation problem. We found that some-

times the use of the charge-flipping algorithm alone stagnates

in local minima. The extraction of the compact support is the

critical part of the current algorithm. Once the correct

compact support is found, a combination of the HIO and ER

algorithm is shown to correctly reconstruct a complex object.

We have also shown that, wherever there is an error in the

current estimate of the support, there is a sharp change in the

phase of the reconstructed complex object. This rule,

combined with other known constraints about the support,

may be used to find the compact support. The reconstruction

process is thus aided by human intervention, when working

with different objects. The support is extracted using the

highest pixels in the modulus of the current reconstructed

complex object. In our tests, we found that it was quicker to

find the correct support by using the peaks that emerged in the

modulus, rather than by using the peaks in either the real part

or the imaginary part of the complex function.

We used different procedures to solve complex phase

objects (0 < � < �/2) and those with stronger phase variation of

0 to 2�. Fig. 7(a) shows the moduli of the Fourier transform of

a positive object. A phase object is formed by using the

positive object as the modulus while assigning random phases

in the range from 0 to �/2. The moduli of its Fourier transform

is shown in Fig. 7(b). A fully dynamic scattered object is

formed by using the same modulus with random phases from 0

to 2�, and the moduli of its Fourier transform is shown in Fig.

7(c). Figs. 7(d), 7(e) and 7( f) show the corresponding auto-

correlation functions calculated using Figs. 7(a), 7(b) and 7(c).

The similarity of the diffraction pattern of the phase object to

that of its real object is evident. Their autocorrelation func-

tions show an analogous similarity. This may explain the fact

that making g(x) real is helpful in finding the support in the

reconstruction of a phase object. Miao et al. (1998) have used a

positivity constraint on the imaginary part to reconstruct a

phase object with a priori known loose support. In the present

algorithm, we found that an accurate estimation of � was

necessary for solving a complex particle with phase variation

of 0 to 2�. Meanwhile, repeated application of dynamic HIO

alone with reasonable constraints on the support (if known)

helped to find a better loose support close to the compact

support.

It has been found that an upper bound for the support can

be estimated from the autocorrelation function of the object.

The recently developed Shrinkwrap algorithm for complex-

valued non-periodic objects makes use of this fact by making

an initial estimate of the support shape based on the auto-

correlation function, and iteratively improving this (Marche-

sini et al., 2003). Unlike the Shrinkwrap algorithm, the

dynamic support described here may either grow or shrink, so

that the search is more flexible.

5. Conclusions

By combining the charge-flipping algorithm, the dynamic

hybrid input–output algorithm and an error reduction algor-
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Figure 7
(a) Moduli of the Fourier transforms of a real and positive object. (b) Moduli of a complex object having the same modulus as (a) and random phase
varying from 0 to �/2. (c) Moduli of a complex object having the same modulus as (a) and random phase varying from 0 to 2�. (d), (e) and ( f ) are
autocorrelation functions calculated by (a), (b) and (c), respectively. Note that the similarity between a real object and a phase object is evident.



ithm, a method is designed to retrieve phases for a complex

object with phase variation lying in the range 0 < � < 2�. The

method does not need a known support to be supplied. Errors

in the support estimate can be corrected for by examining the

phase of the current reconstructed complex object. The simi-

larity of the autocorrelation function between a complex

object obeying the phase-object approximation (where the

phase variation is between 0 and �/2) and a real object enables

the application of real constraints to the charge-flipping

algorithm for efficient reconstruction.

This work is supported by ARO award DAAD190010500.
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